Sitemap

A list of all the posts and pages found on the site. For you robots out there, there is an XML version available for digesting as well.

Pages

Posts

MooreSpeechCorpora Toolkit, Collecting Mooré Data from the Bible

4 minute read

Published:

Working with under-resourced languages like Mooré is both exciting and challenging. In this tutorial, I’ll walk you through the full pipeline I used to collect and prepare Mooré speech data scraped from the Bible-ready to be pushed to the Hugging Face Hub.

MooreSpeechCorpora Toolkit, Collecte de données Mooré à partir de la Bible

4 minute read

Published:

Travailler avec des langues sous-dotées comme le mooré est à la fois passionnant et exigeant. Dans ce tutoriel, je vous présente le pipeline complet que j’ai utilisé pour collecter et préparer des données de parole mooré extraites de la Bible, prêtes à être publiées sur le Hugging Face Hub.

YOLO, You Only Look Once

6 minute read

Published:

Abstract

We present YOLO, a new approach to object detection. Prior work on object detection repurposes classifiers to perform detection. Instead, we frame object detection as a regression problem to spatially separated bounding boxes and associated class probabilities. A single neural network predicts bounding boxes and class probabilities directly from full images in one evaluation. Since the whole detection pipeline is a single network, it can be optimized end-to-end directly on detection performance. Our unified architecture is extremely fast. Our base YOLO model processes images in real-time at 45 frames per second. A smaller version of the network, Fast YOLO, processes an astounding 155 frames per second while still achieving double the mAP of other real-time detectors. Compared to state-of-the-art detection systems, YOLO makes more localization errors but is less likely to predict false positives on background. Finally, YOLO learns very general representations of objects. It outperforms other detection methods, including DPM and R-CNN, when generalizing from natural images to other domains like artwork.

YOLO, You Only Look Once

4 minute read

Published:

Résumé

Nous présentons YOLO, une nouvelle approche de la détection d’objets. Les travaux antérieurs réutilisent des classifieurs pour la détection. Nous formulons plutôt la détection comme un problème de régression : boîtes englobantes et probabilités de classe en une seule évaluation. Un seul réseau prédit boîtes et classes directement à partir de l’image entière. Comme tout le pipeline est un seul réseau, il peut être optimisé de bout en bout.

ResNet, Deep Residual Learning for Image Recognition

7 minute read

Published:

Abstract

Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions.

ResNet, apprentissage résiduel profond pour la reconnaissance d’images

5 minute read

Published:

Résumé

Les réseaux de neurones plus profonds sont plus difficiles à entraîner. Nous présentons un cadre d’apprentissage résiduel pour faciliter l’entraînement de réseaux nettement plus profonds qu’auparavant. Nous reformulons explicitement les couches comme l’apprentissage de fonctions résiduelles par rapport aux entrées, au lieu de fonctions non référencées.

awards

certifications

Machine Learning Engineer

Published:

MLOps, MLflow, Docker, CI/CD, ETL, data versioning and monitoring for production ML systems.

Associate Data Scientist

Published:

Track covering Python, SQL, statistics, probability, data manipulation & visualization and predictive modeling.

extra

portfolio

Generative Adversarial Networks (GANs)

Published:

Deep Convolutional GAN implementation in PyTorch for generating realistic handwritten digits from the MNIST dataset.

Technologies: PyTorch, Deep Learning, Generative Models

Radio Signals Classification

Published:

Deep learning model for classifying radio signals using spectrogram images with PyTorch and transfer learning.

Technologies: PyTorch, timm, Audio Processing, Transfer Learning

Florence-2 Vision Language Model Toolkit

Published:

Comprehensive collection of notebooks for Microsoft’s Florence-2 VLM: inference, data auto-labeling, and fine-tuning for various computer vision tasks.

Technologies: PyTorch, Hugging Face Transformers, Computer Vision

Fine-Tuning MMS Adapter Models for Low-Resource ASR

Published:

Scripts and utilities for fine-tuning Meta’s Massive Multilingual Speech (MMS) adapter models for ASR on low-resource languages like Mooré.

Technologies: PyTorch, Hugging Face Transformers, Speech Processing

Energy Demand Forecasting for Africa - DataTour 2024

Published:

2nd place solution at the pan-African Data Science Nations Cup. Developed regression models to predict energy demand across 50+ African countries.

Technologies: Scikit-learn, Pandas, NumPy, Data Visualization

WrinnnAI - AI Mobile Assistant for the Visually Impaired

Published:

Real-time streaming mobile assistant using Computer Vision and Speech processing to help visually impaired users navigate their environment.

Technologies: Python, Computer Vision, VLMs, TTS, Flutter, FastAPI

Tagantino AI - Smart Agriculture with Satellite Data

Published:

ETL pipelines and Deep Learning models to forecast droughts from satellite data, helping Moroccan farmers optimize water resources.

Technologies: PyTorch, AWS Glue, Airflow, LangChain, RAG

Moore Speech Corpora Toolkit

Published:

Open-source toolkit to collect, preprocess, align, and normalize Mooré language speech/text data for low-resource NLP applications.

Technologies: Python, Speech Processing, TTS, ASR

Spotify Batch Data Processing

Published:

Python project for extracting and processing data from Spotify Web API with OAuth 2.0 authentication and pagination strategies.

Technologies: Python, Spotify API, OAuth 2.0, REST APIs

Barbados Traffic Analysis Challenge

Published:

ML solution for predicting traffic congestion using video analysis. Implemented YOLO detection, VideoMAE embeddings, and ensemble models.

Technologies: PyTorch, YOLOv11, VideoMAE, XGBoost, OpenCV

publications

talks

teaching

Python Programming Classes

Community Course, Community Initiative, 2025

Delivered weekly Python programming classes to 60+ students through a community initiative from March to July 2025.